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Introduction — Motivation

NASA N+3 commercial aviation goals

— Targeting 2030-2035 time frame

— Noise, emissions, fuel burn

e Concept architectures developed to meet goals

 NASA performs research work on these concepts
— Advanced Air Transport Technologies (AATT) project
— Systems Analysis and Integration (SA&I) subproject

» Particular concept studied: SUGAR Volt / hFan

e Studying hFan can answer general hybrid questions




Introduction — Engine Design Process @

* Engines are designed using systems analysis
— Steady-state system-level simulations
— Evaluate system tradeoffs to find optimal designs
* Propulsion systems designed given objectives and constraints
— Obijectives: fuel burn, emissions, noise, cost, performance
— Constraints: component min/max operating conditions (e.g. stall margins)
— Transients (dynamic) cause engine to run closer to constraints
— Solution is to add additional margin to steady-state (design) constraint

SyStem «  Performance
P | . Weight
ropuision . Thrust « Cost
»  Fuel-burn
Component . Weight
o [ Il S |+ Stress =722
1 l J - J“jlﬁ-{ r 5 Stall margin S =
W [ B e B | »  Temperature, etc 2




Introduction — Dynamic Systems Analysis

 Performance requirement for closed-loop system (Accelerate within 5 seconds)
« Steady-state engine design operability constraints include

Pressure Ratio

Uncertainty stack (how much needed for off-nominal margin debits)

— Transient stack (how much is needed for engine power transitions)
Controls affects performance vs operability tradeoff
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Introduction — Dynamic Analysis Tools

« Tool for Turbine Engine Closed-loop Transient Analysis
(TTECTrA)
— Developed at NASA Glenn Research Center
— Enables estimation of the closed-loop transient performance
 https://github.com/nasa/TTECTrA/releases

— TTECTTA designs controllers to protect engine during transient operation,
preserving desired limits (stall margin (HPC/LPC), Fuel to Air Ratio, T40)

» Integrated TTECTrA with NPSS via S-function interface
 Enables dynamic analysis of future engine concepts
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NASA hFan @

 NASA hFan (Parallel Hybrid Electric Turbofan, for SUGAR Volt aircraft)

SUGAR Volt _ _ _
— Sized for high L/D, TBW, 150 PAX aircraft
e 3500 mi max mission

: g i « 900 mi avg/design mission

g ; .»JX/ (= i i

8 o —_—

: M Direct drive, two spool turbofan_
TOGW- 10000  — N+3 cycle/technology assumptions
Top of Climb Thrustperengine:: 3,500 lof — 1380 HP electric machine (EM) on LP spool
Takeoff BET required per engine: 17,500 Ibf ] .. )
e 20,100 Ibf  Assists driving fan for most of flight

_— ° » Driven by batteries in underwing pods
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NASA hFan @

 Q: How does motor make this different from conventional turbofan?
« A: If open loop motor power ramped up and fuel flow held constant...

Fan :
! Wf = 0.7 Ibm/s  Fangoes up op-line
Wi = 0.6 lbm/s
= =Wf=0.5Ibm/s * LPC PR goeS Up
W = 0.4 Ibm/s « HPC goes down op-line
----- Wif=0.3lbm/s
—Wf= 0.2 lbm/s « HPT doesn't really move

« LPT Wc goes down
» Takeaways:

* Adding motor power...

— reduces LPC stall
margin, affords some
SM control

— increases fan corrected
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NASA hFan — Closed-Loop System

« TTECTTrA control system revised to control thrust directly
— Assumes onboard thrust model (model-based engine control, or MBEC)
— Simplifies control design and analysis, and is appropriate for conceptual study

e Fuel control: Gain scheduled PI with... «  Motor control:
— Accel limiter: Wf/Ps3 max schedule « Steady-state power =
— Decel limiter Wf/Ps3 min scalar f(thrust demand)
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Simulation Results — Baseline Controller

* Analyze transient response of baseline controller

— Run 15-100% thrust response (accel and decel) at controller design points (red points)

— Evaluate off-design closed-loop response with Monte Carlo accel/decel simulations (blue)
» Results show closed loop system is operable throughout envelope

— Satisfies constraints
» Closed-loop system also meets performance requirements

— Response time less than 5 s when doing a 15-100% transient at static condition
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Simulation Results — DSA

Fn, Ibf

TTECTTA used to tune accel limiters for different HPC stall margin constraints

Controllers designed for 5, 7, 9, 11, 13, and 15% minimum HPC stall margin
15-100% snap accel transients ran at sea-level static for each controller

Thrust, stall margin responses shown

Response time (15% — 95% thrust) and minimum HPC stall margin metrics obtained

Compute metrics

Each line represents 2 from response data
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Simulation Results — DSA

 Engine can accelerate in 5 s while preserving 13.0-13.5% HPC SM
 However, this assumes baseline motor control design

— Attempts to apply maximum motor power as soon as the transient begins

&

* As motor power ramp rate limit was decreased, changes to tradeoff observed
— Varying both fuel controller accel limiter and motor ramp rate simultaneously yields

following metrics
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« It turns out if ramp rate chosen such that motor response time is approximately
1 second, we get a better trade (higher stall margin for a 5 second accel)

» Also examined design excursions for motor power rating (not shown; see paper)
— More transient power not found to be beneficial for hFan system
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Conclusions

 Closed-loop N+3 hFan model demonstrated
— NPSS model integrated into Simulink-based TTECTTA controller via S-Function
— System is operable throughout envelope

* Dynamic systems analysis conducted
— TTECTTrA controllers designed to assess performance vs operability
— Suggests steady-state HPC stall margin can be reduced, and engine redesigned
— Conduct DSA at more flight and uncertainty conditions to obtain better estimate

* Trends observed (useful information for future work)
— Holding other things constant, application of low spool motor power...
* ...pushes fan and HPC up and down along their op-lines
e ...pushes LPC PR up and down
— Instantaneous application of motor power is not optimal for operability
* Moderate ramp rate that gives a 1 second rise time is appropriate for hFan
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Thank You!!

Questions?
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